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Matchmaking and McNemar in the Comparison
of Diagnostic Modalities’
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MR Positive Negative Total MR Positive Negative Total

Positive A B Positive 20 10 30

Negative C D Negative 1 1 2

Total N Total 21 1 1 32

Example of data array for samples comprised of matched pairs comparing CT and MR imag-

ing (left), and array with data from the study of Chandnani et al (right).
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T HE Letter to the Editor in this issue

of Radiology by Drs Mann and Hil-
debolt (1) on the inappropriate use of ax2test in modality comparison of relat-
ed samples in the article by Chandnani

et al (2) and the response of the authors
are notable in that the sole issue of the

exchange is statistical technique.
Such dialogue in radiology is impor-

tant and should be encouraged. Rou-
tine criticism and discussion of the pre-

sentation and analysis of radiologic
data would serve two major functions.

First, as in this case, educational: the
existing elements of statistical analysis
would be reiterated and distinguished

and their proper application promoted.
Second, investigational: it would facili-
tate the development and formalization
of methods of study design and formats
of data presentation, summarization,

and analysis-the “statistics” of radiol-
ogy. The “statistification” of radiology

must be an iterative process of invent-
ing descriptive, graphic, and analytic
tools and tailoring them to radiologic

tasks; the testing of these tools on real

data and radiologic problems is essen-
tial for validation and efficient devel-

opment. The Letters to the Editor sec-
tion of Radiology should provide an
excellent forum for elucidating, dis-
cussing, and remedying the problems

uncovered by such exploration and

evaluation.
The criticism of Drs Mann and Hil-

debolt and the brief review by Shaffer
et al (3) of the statistical methods of ar-
tides recently published in Radiology

suggest a need for greater familiarity
by radiologic investigators with the
analysis of “matched data,” specifically,
the McNemar test. Since most radiolog-
ic research yields matched data-the

result of the direct comparison of dif-

ferent diagnostic techniques performed
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on the same patients-the McNemar
test and related analysis should be in
the radiologic investigator’s statistical
repertoire. The purpose of this editorial
is to illustrate and explain the applica-

tion and principles of these statistical
techniques and to provide a list of ref-
erences.

Matched Data

Comparative radiologic studies com-
monly produce matched data (matched
samples) since, frequently, all the ex-
aminations under comparison are per-
formed on each subject. For example, in
the study of Chandnani et al (2), infec-
tions were experimentally created in
the legs of New Zealand white rabbits

and every animal was imaged with
both magnetic resonance (MR) imaging
and computed tomography (CT).

Matched data consist of matched pairs
of results-in this case, the MR imag-
ing and CT results for each experimen-

tal animal. Since the same lesion is im-
aged by means of both techniques, the
data are matched by the characteristics
that may influence the imaging results
(ie, lesion size, extent, and location).

McNemar Test

The McNemar test (4-7) pertains to
matched pairs of binary (dichotomous)
test results. The results of each diagnos-

tic test fall into two categories, positive
and negative. The data are succinctly
presented in a two-by-two array with
the rows corresponding to the results
of one diagnostic test and the columns

to the results of the other; each element
of the array is the number of cases ob-
served with the particular combination
of test results.

For illustration, consider the data of
Chandnani et a! for the animals with
osteomyelitis (since their report con-
tained only the total number of animals
that were CT positive and negative and

MR positive and negative, the numbers
may be slightly inaccurate; however,
no entry in the array can be off by

more than 1).
The sample (or observed) “sensitivi-

ty” or true-positive rate of each tech-
nique to the presence of the osteomy-
elitis is the number of cases with “posi-
tive” findings divided by the total
number in the array; hence, the sample

sensitivity of MR imaging (A + B)/(A
+ B + C + D) = 30/32 = .94 and the
sample sensitivity of CT (A + C)/(A

+ B + C + D) = 21/32 = .66 (Figure). By
subtraction, the sample (or observed)
difference in the sensitivities is the

sensitivity of MR imaging minus the
sensitivity of CT ([B - C]/N 9/32
.28). An analogous array can be gener-
ated for the cases free of disease (the

animals free of infection). This analysis
will be concerned with only the data

array for the diseased cases (the infect-

ed animals). An identical analysis can
be applied to the other array; but since
the data in that array represent “nor-
mals” (animals free of infection), that

analysis pertains to the assessment of
the false-positive rates and the “specifi-
cities” of the diagnostic tests under

comparison.
The objective of the McNemar test is

to assess the statistical significance of
the observed differences in sensitivities
between MR imaging and CT. B and C
in the data array are “discordant” data
(ie, the MR imaging results differ from

the CT results). These discordant data
are the basis of the McNemar analysis.
The logic behind the test is intuitive; it
is based on the fact that if MR imaging

and CT have equal sensitivities in the
population, the odds should be 50-50
that a discordant case selected at ran-
dom from the population is either MR
positive and CT negative or MR nega-
tive and CT positive. Hence, if a num-
ber of cases are sampled and the results
placed in an array as shown earlier, it is
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to be expected that the discordant cases
will be evenly divided between the dis-
cordant cells MR positive and CT nega-

tive and CT negative and MR positive.

The more uneven the distribution of
the discordant cases between the dis-
cordant cells-the more B differs from

C-the greater the evidence that the
sensitivity of CT in the population dif-
fers from that of MR imaging. The
McNemar test assesses the likelihood
that the observed distribution of dis-

cordant cases between the two discor-

dant cells could occur by chance if the

diagnostic techniques being compared
had equal sensitivities in the popula-
tion. The significance level of the re-
suit of the McNemar test is the proba-
bility of the observed distribution or a
more unequal distribution of the dis-
cordant data occurring if the diagnostic
tests being compared had equal sensi-
tivities.

Binomial Distribution

The statistics governing the distnibu-

tion of discordant cases with equally
sensitive techniques are identical to
those of the flip of a coin; the chance of
a randomly chosen discordant case be-

ing MR positive and CT negative is .5,
the same as the chance of “heads” oc-

curring on the flip of a coin. The
chance of 10 of 1 1 discordant cases be-
ing MR positive and CT negative and
one of 1 1 being MR negative and CT

positive is the same as the chance of
one heads occurring in 1 1 flips of the
coin (ie, 11[.5]11 = .0005). Similarly, the
chance of two of 1 1 discordant cases be-

ing MR negative and CT positive is the
same as the chance of two of 1 1 coin
tosses being heads. These probabilities
are given by means of a binomial distri-
bution. The binomial distribution per-
tains to a series of independent binary
events (eg, 1 1 flips of a coin) in which
each event has the same probability of
occurrence, p (eg, probability of heads

on each flip = .5). The binomial proba-
bility distribution gives the probability
that a specific number of these events,
x, will be positive as a function of n and
p (eg, the probability of two of 1 1 flips

of the coin being heads is given by the
binomial distribution with p = .5, n =

1 1, and x = 2). Therefore, if the diag-

nostic tests compared are equally sensi-
tive, the probability that B cases will be
MR positive and CT negative and C
cases will be MR negative and CT posi-
tive is determined by means of binomi-
al distribution with p = .5, n = B + C,

and x = B.

Exact Form of the McNemar Test

The binomial distribution is the basis

of the exact form of the McNemar test.
For illustration of the exact form of the

McNemar test, consider its application
to the MR imaging and CT data pre-
sented earlier, in which one of 11 dis-

cordant cases were MR negative and
CT positive and 10 were MR positive
and CT negative. The objective of the
test is to calculate the probability that

the observed discrepancy between the
numbers of discordant cases (one and

10) or an equally or more discrepant
combination (ie, 10 and one, 11 and 0, 0
and 11) could occur by chance if MR
imaging and CT had equal sensitivities
in the population. This probability is

calculated by means of the binomial

distribution and is the significance 1ev-
el, or P value, of the test. The signifi-
cance level forms the basis for rejection

of the null hypothesis that the diagnos-
tic tests being compared are equally
sensitive; the smaller the P value, the

stronger the evidence for rejection. The
P value indicates the likelihood that

the null hypothesis is being falsely re-

jected.
With use of the binomial distribution

(assuming equal sensitivities), the
probability of one of 1 1 discordant

cases being MR negative and CT posi-
tive is .0054, the same as that of the
equally disparate combination 10 of 11
being MR negative and CT positive.
The probabilities of the more disparate
combinations of 0 of 1 1 and 1 1 of 1 1 be-
ing MR negative and CT positive are

.0005; hence, by the exact form of the
McNemar test, the hypothesis that MR
imaging and CT have equal sensitiv-

ities can be rejected at the P (.0054 +
.0054 + .0005 + .0005) = .012 level of
significance.

The McNemar Statistic

Approximation rather than an exact
method is the basis of an alternative
form of the McNemar test. This form is
rooted in the fact that if the diagnostic

tests being compared are equally sensi-
tive, then [(B - C) - 1]2/[B + C] ap-
proximates a x2distribution with 1 df.

The expression [(B - C) - l]2/[B + C]
is termed the McNemar statistic with

continuity correction (drop the -1
within the brackets and it is the McNe-

mar statistic). The greater the differ-
ence between B and C, the greater the
value of the statistic and the stronger
the evidence for rejecting the hypothe-
sis that MR imaging and CT have equal
sensitivities. Since this form of the
McNemar test is based on a “limit
theorem” (ie, the approximation be-
comes exact only in the “limit” as the
size of the sample becomes infinite), it

should be applied only to large sam-
ples. There are guidelines for deter-

mining what constitutes a sufficient

sample size such as B + C > 20.
To illustrate the use of the McNemar

statistic, suppose there were 40 discor-

dant cases, 10 MR negative and CT pos-
itive and 30 MR positive and CT nega-

tive. The value of the McNemar statis-
tic with correction for continuity
would be [(30 - 10) - 1]2/[30 + 10] =

9.025; reference to a table of x2distni-
bution with 1 df reveals 9.025 to exceed
the 99.5th percentile of the x2 distribu-
tion with 1 df (ie, if MR imaging and

CT have equal sensitivities in the popu-
lation, the chances of the McNemar sta-
tistic having a value greater than the
one observed is <0.5%); hence, the hy-
pothesis that MR imaging and CT have
equal sensitivities in the population

can be rejected at the P < .005 level of
significance.

Some methods extend the notion of
the McNemar test to matched data ta-
bles with more than two rows and col-
umns suitable to the analysis of diag-

nostic tests with more than two out-

comes (4).

Statistical versus Diagnostic

Significance

The diagnostic advantage of one mo-

dality over another depends on the
magnitude of the differences in their

sensitivities. One problem with the
McNemar test-a trait shared with tests

of significance in general-is that tniv-
ial differences in sensitivity, no matter
how small, become statistically signifi-

cant as the sample size increases.
Hence, it is important to distinguish
between statistical significance and di-
agnostic significance; assessment of the
magnitude of the differences in sensi-
tivities of the diagnostic tests is a neces-
sary part of the comparative analysis.

The McNemar analysis provides for

estimation of the magnitude of the dif-
ference in the sensitivities. Specifically,
the estimate of the sensitivities is (B -

C)/N = (10 - 1)/32 = 0.28 for the

matched MR imaging-CT data array.

Confidence Intervals

(B - C)/N provides what is known as
a “point” estimate; the estimate of the
difference in sensitivities is given as a

single value. The “confidence interval”
is another type of estimate; it is given
as a range of values rather than just a
single value. With the confidence in-
terval comes a “confidence level,”

which indicates the likelihood that the
confidence interval derived from the
data will include the true value of the
parameter that is being estimated for

the population from which the data are
a sample. The greater the confidence
level, the wider the interval (ie, the
more certain the conclusion, the less
precise the statement).

The confidence interval of the differ-
ence in the sensitivities of two diagnos-
tic tests may be approximated from the
matched data array as follows (5,8):

lB-C . . . . 1
� - [K (SE z�sensitivities)] - -,

IN N

B-C . . . . 1
+ [K (SE �sensitivities)] + -

N N

where K is a coefficient dependent on
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the desired confidence level of the con-
fidence interval and where the stan-

dard error (SE) of the difference in the
sensitivities (SE [� sensitivities]) is giv-
en by

SE �sensitivities

= �I[N(B + C)] - [(B - C)2]

N�/N

For an 80% confidence interval, K =

1.28; for a 90% confidence interval, K
1.645; for a 95% confidence interval, K
= 1.96; and for a 99% confidence inter-
val, K � 2.58. (For a confidence level of

[100 - a]%, K equals the [100 - a/2]
percentile of the standard gaussian dis-
tnibution with a mean of 0 and a stan-

dard deviation of 1; for a [100 - 5]% =

95% confidence interval, K = 1.96, since
the area of the standard gaussian distri-
bution with a mean of 0 and a standard

deviation of 1 for values � 1 .96 incorpo-
rates [100 - �/2]% = 97.5% of the total

area under the gaussian distribution
curve.)

From the matched data array de-
scribed earlier, the SE of the difference
between the sensitivities of MR imag-
ing and CT is

SE �sensitivities

= �J(32(l0 + 1)] - [(10 - 1)2] 0.09.

32�32

The 95% confidence interval of the dif-
ferences in the sensitivities (ie, the sen-
sitivity of MR imaging minus the sensi-
tivity of CT) is approximately

{0.28 - [1.96(0.09)] -

0.28 + [1.96(0.09)] + �} = (0.07, 0.49).

With a confidence of 95%, it can be in-
ferred that the sensitivity of MR imag-
ing in the population is between 7%
and 49% greater than the sensitivity of

CT in the population; in other words,
MR imaging would detect between 7%

and 49% more of the infections than CT
would.

The meaning of confidence level

may be better appreciated by consider-
ing the following: Suppose that instead
of using just one sample of 32 infected
rabbits, Chandnani et al performed the
same experiment numerous times, each
time with a new sample of 32 rabbits.
Suppose that they calculated a 95% con-
fidence interval for the difference in
sensitivities between MR imaging and

CT for each sample. Since the results
would differ from sample to sample,
the calculated confidence intervals
would also differ from sample to sam-
ple; the confidence level of these confi-
dence intervals corresponds to the frac-
tion that contained the true value of
what is to be estimated-the difference

between the sensitivities of MR imag-
ing and CT in the population. Since

95% confidence intervals were calculat-
ed, 95% of the intervals calculated from
the samples should contain the true
difference between the sensitivities of

MR imaging and CT in the population;
hence, the chances are 95% that a ran-

domly selected confidence interval (eg,
the confidence interval derived from

the random sample of 32 cases in the
data array above) will contain the true
difference in sensitivities.

Given the assumptions that common-
ly underlie their calculations, confi-
dence intervals should be used as
rough approximations. However, the
use of confidence intervals to summa-
nize results should be encouraged for
several reasons. They serve to diminish
confusion between statistical signifi-
cance and diagnostic significance by

making explicit the magnitude of the
differences in sensitivities. They rein-

force the reality that the estimates are
projections subject to uncertainty. The

confidence interval provides a range of
plausible values of what is to be esti-
mated; the width of this range mdi-
cates the degree of this uncertainty.
The extremities of the confidence inter-
val give some indication of the limits of
what is inferable from the data at hand.

Complementanity of Results

The comparison of two diagnostic
modalities should include consider-
ation of the complementanity of their
results. How often does one modality

depict an abnormality that was missed
with the other? How many additional
infections would be detected if CT
were performed in addition to MR im-
aging? The matched data array pro-
vides answers to such questions. B/(B +
D) gives the fraction of cases negative

at CT that were positive at MR imaging
(10/11 in the Figure). Similarly, C/(C +
D) gives the fraction of cases negative

at MR imaging that were positive at CT
(1/2 in the Figure).

These fractions may be used to esti-
mate the complementarity of MR imag-
ing and CT in the population. B/(B +

D) is an estimate of the probability that
a randomly selected infected case nega-
tive at CT would be positive at MR im-
aging; C/(C + D) is an estimate that a
randomly selected infected case nega-
tive at MR imaging would be positive

at CT. Confidence intervals for these
probabilities can be estimated exactly
from published tables and graphs of
the confidence intervals for propor-

tions (derived from the binomial distri-
bution) (2,4,6); they can also be approx-
imated by the following (adapted from
reference 6):

2fn + K2 -

[ 2n+2K2

2fn +K2+K’�jK2+4f(1 -f)�1
2n + 2K2

where is the sample fraction that cor-
responds to the probability to be esti-

mated (ie, B/[B + C] or CI [C + D]), K is
a coefficient dependent on the desired

confidence level of the confidence in-
terval (identical to the K discussed ear-
lien with the confidence interval for

the difference in sensitivities), and n is
the total number of cases involved in

the estimate (ie, n = [B + D] to estimate
the probability of a positive MR image
given a negative CT; n [C + DJ to es-
timate the probability of a positive CT
given a negative MR image).

Suppose, for example, that there
were 40 CT-negative cases in a matched

sample of diseased cases; 25 were MR
positive and 15 were MR negative (ie, B
= 25 and D = 15). Hence, f 25/(15 +

25)= 0.62andn (15 + 25) 40. Fora
95% level of confidence, K 1.96. On
the basis of the above formulas, the
95% confidence interval of the proba-
bility that a CT-negative case randomly
selected from the population will be
MR positive (0.47, 0.75).

Summary

Comparative studies of radiologic
techniques commonly yield matched
data due to the ease and desirability of
performing all of the techniques on

each of the patients. The two-by-two
matched data array and the McNeman

analysis provide a succinct format for
the presentation and proper analysis of

matched comparisons of binary (posi-
tive and negative) test results. When

comparing tests, it is essential not to
rely on just the statistical significance
of the differences in sensitivities (or
specificities); the magnitude of the dif-
ferences must also be assessed. Confi-
dence intervals provide a useful form

of estimation by providing a range of
plausible values and an indication of

the precision of the estimate. The
matched data array also indicates the

complementarity of the diagnostic tests
being compared. U
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